RCS EXERCISE PHYSOLOGY - 3 Andrew S Kein, DC, DAC BSP, CSCS

- Speed
$>$ Agility
- Plyometrics
> Program design
$>$ Environmental stresses
- Speed - Ability to achieve high velocity movement
- Change of Direction - Ability to explosively change direction and velocity
$>$ Agility - Ability to change direction and velocity in response to a stimulus

SPEED

- Speed - How fastare you moving
> Velocity - How fastare you moving in a specific direction
> Acceleration - The rate at which velocity changes
- Deceleration - Negative acceleration

Rate of Force
 Development (RFD) as a

 function of time.

SPEED

" "Speed is a neural quality"

- Boo Schexnayder
- Improving neuromuscularintegration
- Improved recruitment
$>$ Improved rate coding
> Improved synchronization
> Training the nervous system
- Quality of work
$>$ Long rests
> Low volume

SPEED

- Sprinting involves the relationship between stide frequency and stide length
- Stide frequencydependent on metabolic systems
- Stide length biomechanical efiiciency
- Neurological efiiciency

	Usain Bolt	Other sprinters
Stride Length	$\mathbf{2 . 4 6 ~ m}$	$\mathbf{2 . 2 3 ~ m}$
Strides in $\mathbf{1 0 0 ~ m}$	$\mathbf{4 0 . 9 2}$	$\mathbf{4 4 . 9 1}$

Sprinting Technique

\checkmark Start

- Out of the blocks orfirm a stand still position
- Acceleration
$>$ Initial steps
- Top Speed
$>$ Also known as maximum velocity

Starting

Starting

- Aggressive extension with both legs
- Verical forces to overcome a static position in the stance phase
- The curent literature suggests that the biggest difiference between elite speed and average speed is the amount of vertical force applied to the ground.

SPEED - PHASES OF SIRIDE

Stance Phase
-Eccentic braking
Concentric propulsion

- Tiple ExtensionExtending the ankle, knee and hip.

SPEED - PHASES OF SIRNDE

PFight phase
PRecovery
Dleg swing for ground preparation
\checkmark Tiple Fexion- Fexing the ankle, the knee and hip.

SPEED

- IMPROVING PERFORMANCE

- Improve strength during the support phase; strength against gravity, propulsive forces
- Improve swinging actions; speed of circular movements, speed of reversal

SPEED
 - IMPROVING PERFORMANCE

Strength - weight training, plyometrics, contrast training

- Contrast training- resistance, assistance

Sed Pulls

Thigh and psoas major muscularity and its relation to running mechanics in sprinters. Ema R, Sakaguchi M, and Kawakami Y. Med Sci Sports Exerc 2018;50(10):2085-2091.

Compared with untrained men, sprinters had significantly greater thigh muscle volumes of the hip flexors and extensors, total adductors, gracilis, and psoas major. Monoarticular knee extensor and flexor thigh muscle volumes were similar between the two groups.
Hip flexion training appear to be more appropriate for sprinters.

Trunk and lower limb muscularity in sprinters: what are the specific muscles for superior sprint performance? Tottori N, Suga T, Miyake Y, Tsuchikane R, Tanaka T, Terada M, Otsuka M, Nagano A, Fujita S, Isaka T.BMC Res Notes. 2021 Feb 25;14(1):74.

Absolute and relative CSAs of most trunk and lower limb muscles, including the psoas major (PM) and gluteus maximus (GM), were significantly larger in sprinters than in non-sprinters. The absolute and relative CSAs of the PM and GM correlated significantly with personal best $100-\mathrm{m}$ sprint time in sprinters.

Trunk and lower limb muscularity in sprinters: what are the specific muscles for superior sprint performance? Tottori N, Suga T, Miyake Y, Tsuchikane R, Tanaka T, Terada M, Otsuka M, Nagano A, Fujita S, Isaka T.BMC Res Notes. 2021 Feb 25;14(1):74.

Absolute and relative CSAs of most trunk and lower limb muscles, including the psoas major (PM) and gluteus maximus (GM), were significantly larger in sprinters than in non-sprinters. The absolute and relative CSAs of the PM and GM correlated significantly with personal best $100-\mathrm{m}$ sprint time in sprinters.

The muscle morphology of elite sprint running.

Miller R, Balshaw TG, Massey GJ, Maeo S, Lanza MB, Johnston M, Allen SJ, Folland JP.Med Sci Sports Exerc. 2021 Apr 1;53(4):804-815.

Investigate the differences in muscle volumes and strength between male elite sprinters, sub-elite sprinters, and untrained controls.

Three hip muscles were consistently larger in elite vs sub-elite (tensor fasciae latae, sartorius, and gluteus maximus. Plantarflexors showed no differences between sprint groups.

Greater hip extensor and gluteus maximus volumes discriminate between elite and sub-elite sprinters and are strongly associated with sprinting performance.

SPEED

- IMPROVING PERFORMANCE

- TECHNIQUE
$>$ Leg drills- Tiple extension, tiple fiexion
- Arm drills - standing and seated

〉Ebows locked, movement at the shoulders
> "Chin to Pocket"

SPEED

$>$ Acceleration
-10-40 meters

- Speed (Top End)
, 40-70 meters
> Speed endurance
80-150 meters

SPEED - SIRIDE ANALYSS

- MUSCIE ENERGY EXPENDED
$>57 \%$ to accelerate body segments
$>22 \%$ to decelerate body segments
$>3 \%$ to balance gravitational forces
> 18\% against air resistance and finction

SPEED

- Interaction of stide frequency and stide length
- Explosive horizontal push-off
\rightarrow Minimal vertical displacement

SPEED

$>$ Stance Phase
$>$ As leg touches down, knee should be slightly fiexed at approximately 170 degrees

- Angle of alignment between toe-hip line and horizontal line is approximately $60-70$ degrees

SPEED

$>$ Fight Phase
$>$ Aftertakeoff, the backward moving leg reaches maximal extension while the firontleg is in optimal fexed position
> When the back leg starts moving forward, the knee fiexors should hold the leg folded atapproximately 30 degrees
> Through the propulsion phase, the athlete should bring the foot of the folded leg through the cycle at the same level of the supporting knee

SPEED

$>$ Define what you need to develop.
$>$ Improve strength and power (R-D).

- Tiple extension
- Tiple fiexion
$>$ Improve technique
- Emphasize the neural quality of speed.

AG||П

The ability to change direction rapidly.

1) Anticipated movements (pre-planned).
2) Unanticipated movements in response to an opponent (reactive).

Fexibility
$>$ The ability of a muscle or muscle groups to lengthen passively through a range of motion
Mobility
$>$ Ability of a joint to move actively through a range of motion

Sifiness

- A measure of how much load a tissue can take before it deforms

Young WB, James R, Montoomery . J Sports Med Phys Fitness. 2002 Sep;42(3):282-8.

Change of Direction

- Shallow cutting angles - shorter ground contact times (250 ms).
- Aggressive cutting angles-longer ground contact time ($>250 \mathrm{~ms}$) - increased deceleration requirements.
- Orientation of the body
- Deceleration to a stop, leading into reacceleration
> Increased muscle mass in combination with decreased \% body fat is regarded as a predictor of change of direction ability.
- COM has to be decelerated in the approach and accelerated in the new direction. COM is posterior to the CFA.
- The body then has to be rotated towards the new direction. COM has to be anterior to the CFA.
- (COM - center of mass)
- (CFA - center of force application)

Young WB, James R, Montoomery . J Sports Med Phys Fitness. 2002 Sep;42(3):282-8.

REACTION TIME

Pre-motor time - The time between stimulus identification and the onset of muscle activity.

Motor time - The time between initial muscle activity and initiation of movement This would include electromechanical delay.

The CNS needs time to identily and implement the appropriate postural and movement strategies.

The muscular system needs the strength necessary for executing the strategies as quickly and efficiently as possible.

Stages of motor leaming

- Acquisition - what skills do athletes need to know.
- Application - can the athlete successiully complete the skill.
- Assimilation - can the athlete do the skills and routines automatically.
- Adaptation - can the athlete do the skills and routines automatically in a unique situation.

W drill \rightarrow reaction drill

Plank Dill - upper body reactive agility

PLYOMEIRCS

$>$ Exercises thatenable a muscle to reach maximal strength in as shorta time as possible. These exercises use the force of gravity to store energy in the elastic components of the muscle and then combine with the energy of the musc ular contraction to exert maximal power. Plyometrics has also been called jump training, and stretch-shortening exercises.

PLYOMERNCS

- Depth jump vs Drop jump Dr. Natalia Verkhoshansky
Paavo Komi - SSC and the drop jump Camelo Bosco - Drop J ump test

PLYOMEIRCS

Depth J umps (Y. Verkhoshansky) increase explosive strength high drop height (1.10 m)
pre-landing muscle activation
Drop Jumps (C. Bosco)
improve elastic energy recoil drop height ($20-60 \mathrm{~cm}$)

PLYOMERNCS

$>$ If ground contact exceeds 0.25 sec onds, then power production can be significantly reduced.

Science for Sport

| Table 1. Ground contact times/coupling time of common exercises. |
| :--- | :---: | :---: |
| Exercise Ground Contact Time (Ms) SSC Classification
 Race Walking (18) $270-300$ Slow
 Sprinting (19) $80-90$ Fast
 Countermovement Jump (CMJ) (20) 500 Slow
 Depth Jump (20cm -60cm) (16, 17) $130-300$ Fast / Slow
 Long Jump (21) $140-170$ Fast
 Multiple Hurdle Jumps (8) 150 Fast |

The reactive strength index (RS) has been developed as a measure of explosive strength and is derived by evaluating jump height divided by ground contact time during the depth jump (DJ).

Reactive strength index (RS) = Fight Time / Ground Contact Time.
$><1.5$
$>$ Low reactive strength, strength and low level plyometrics

- 1.5-2.0
- Moderate reactive strength for plyometrics
> 2.0-2.5
- Good levels of reactive strength, high intensity plyometrics
- 2.5-3.0
\downarrow High levels of reactive strength, diminishing retums?
$\gg 3.0$
- Wordd class reactive strength ability

- For the muscle spindle refiex to fire, a fast rate of eccentic stretching mustoccur.
- For elastic energy, there must be a short transition period between eccentic and concentic phases.
- For enhanced motor unit recruitment, there must be a fasteccentic phase and a short transition period between the eccentic and concentic phases.
- For increased force development, the eccentric phase must be slow.

PLYOMEIRCS

- Program factors
$>$ Strength base
- Lower body - squat 1.5 x body weight
- Upperbody - bench press 1 x body weight
- 5 clap push-ups
\checkmark Drop heights
- select drop heightas low as 20 cm
- allow 5 jumps at each height
- increase the drop height
- increments of increase should not be greater than 10 cm

PLYOMERNCS

- If the drop height is too high for the athlete's strength, ground contact time will increase.

PLYOMEIRCS

\checkmark There will be bilateral dififerences in peak force and average force based on drop jump (depth jump) height silateral dififerences are seen at 20 and 40 cm , but notata 60 cm starting height

- Ball NB, Stock CG, ScurrJ C. J SCR 2010;24(10):27622769.

PLYOMEIRCS

\wedge Equipment

- Footwear
-Surface
- Facilities

PLYOMEIRCS- Movements

$>$ Jumps- tiple extension

- Hops- paw mechanics
- Bounds-push mechanics

PLYOMEIRCS

>IEVELI- Eccentrics

Landing mechanics-quiet landings
Minimal fiexion at knees and hips
"Stick it"

PLYOMEIRCS

> IEVELII - Low intensity

Minimize ground contact- jump height unimportant
Ankling, skipping, etc. Stay on the balls of the feet

PLYOMERNCS

- LEVELIII - Increasing intensity

Minimizing ground contactand maximizing force, horizontal and/or vertical

PLYOMERNCS

$>$ Jumps in place
$>$ Standing jumps
> Multiple hops/jumps
\triangleright Bounds
$>$ Box drills
$>$ Depth jumps

PLYOMEIRCS

$>$ Program design

- Frequency - 2 days of high intensity/ wk
- Volume
- Beginner 80-100
\checkmark Intermediate $100-120$ (100-150)
> Advanced $\quad 120-140 \quad(150-250)$
$>$ Intensity
> Recovery progressive overload
$>$ Plyometrics and weighttraining

PLYOMEIRCS

$>$ For children (8-14), c urrent evidence suggests that a program of $2 \times /$ week, beginning at 50-60 jumps/ session for 8-10 weeks results in the largest changes in running and jumping performance.
> Johnson BA, Salzberg CL\& Stevenson DA. J Srength Cond Res. 2011:25(9);2623-2633.
$>$ Plyometric training had a large effect on improving the ability to jump.

- The effects on running velocity were notas consistent across the studies.
$>$ There was also some improvement in agility and kicking distance in soccer players.
- Every study addressed safety in a satisfactory manner.
$>$ Focus of the exercise should be specific to the desired outcome.
\checkmark Progression should be to $90-100$ jumps by the end of the 10 weeks.
$>$ Sessions should be 10-25 minutes in duration with appropriate wam-up and cool-down.
$>$ Drills should last approx. 10s with 90s rest between drills.
- There should be a low instructor-to-studentration (1:4-5).

PLYOMEIRCS

$>$ Sequencing effects of balance and plyometric training on physical performances in youth soc cer athletes.

- Hammami R, etal., J Strength Cond Res 2016;30(12):3278-3289
> The objective was to examine the effiect of sequencing balance and plyometric training on the performance of 12- to 13-year-old athletes.
> Twenty-four young elite soccer players trained twice per week for 8 weeks either with an initial 4 weeks of balance training followed by 4 weeks of plyometric training (BPI) or 4 weeks of plyometric training followed by 4 weeks of balance training (PBI).

Exercise	Workout 1	Workout 2	Workout 3	Workout 4	Workout 5	Workout 6	Workout 7	Workout 8
Countermovement jump	1×8	2×10	2×12	2×15	1×10			
Drop jump +1 step	1×8	2×10	2×12	2×15	1×10			
Horizontal line jump	1×8	2×10	2×12	2×15	1×10			
Lateral hops	1×8	2×10	2×12	2×15	1×10			
Ankle jump	1×8	2×10	2×12	2×15	1×10	3×12	3×15	1×10
Single-leg cone jump: front to back and side to side						$3 \times 12 / \mathrm{leg}$	$3 \times 15 / \mathrm{leg}$	$1 \times 10 / \mathrm{leg}$
Single-leg maximal rebounding: hops +5 m acceleration						$3 \times 12 / \mathrm{leg}$	$3 \times 15 / \mathrm{leg}$	$1 \times 10 / \mathrm{leg}$
Hurdle jump						3×12	3×15	1×10
Drop from a low platform and perform ballistic-type pushups or clapping push-ups						3×12	3×15	1×10
Total foot/ground contact	40	50	60	75	40	60	75	40

> The major finding of the present study was that sequencing 4 weeks of BPTin 12- to 13 -year-old male elite soccer players resulted in either similar or superior performance enhancements compared with plyometric before balance training (PBI).

PROGRAM DESGN Needs Analysis

$>$ Needs analysis helps detemine the current state of the athlete and whatlevel that athlete wants to achieve.

- Task analysis
- Athlete Analysis
- Goals and Priorities
- Resources and Constraints

PROGRAM DESGN Needs Analysis

- SOCCER
- Less than 2\% of total distance is with the ball
$>1-2,000$ bouts of action
$>$ Activity transition every $5-6$ sec, 3 sec rest every 2 minutes
- Sprints have a 15-meter average, once every 90 sec

PROGRAM DESGN Needs Analysis

- SOCCER
$>$ Standing 17\%
- Walking 40\%
- Easy running 35\%
- Easy running (B) 1.3\%
$>$ Hard running 8\%

EXERCISEAND PROGRAM DESGN TESING PROTOCOLS

$>$ Administration of tests
Supervision

- Warm-up
$>$ Motivation
Safety

TESTSEIECTION

- Local muscular endurance
- Strength / Power
- Aerobic capacity
- Anaerobic capacity
- Agility
- Speed
$>$ Body composition
- Fexibility

TESTSEIECTION

- LOCAL MUSCULAR ENDURANCE

Curi-ups
$>$ Push-ups
Abdominal endurance

- Back extensor endurance
>ateral trunk endurance

TESTSEIECTION

STRENGTH / POWER
>1RM - bench press, squat
-1RM - powerclean
, Vertical jump, standing long jump

TESTSEIECTION

- AEROBC CAPACIIY
1.5-mile run
>12-minute run
- ANAEROBIC CAPACIIY
-300-yard shutite

TESTSEIECTION

> AGIIIY

- Ftest
- Pro agility test
- SPEED
>40-yard spint

TESTSEIECTION

- 40-yard sprint
- Dive - initial segment lasts 7 steps, Strongest leg forward, weight on opposite hand. Explode outand stay low at 45 degrees. Takes about 1.45 sec onds.
$>$ Transition - Form is the key. Takes about 2 seconds.
- Finish - run through the finish and don't lean. NFL Combine record is J ohn Ross in 2017, 4.22.

TESTSEIECTION

- BODY COMPOSIION
$>$ Hydrostatic weighing *
$>$ Skin fold and Gith measurements *
> Bioelectical Impedance Analysis (BIA) *
$>$ Near-Infirared Interactance (NIR)
> Utrasound, CT, MR
$>$ Dual-Energy X-Ray Absorptiometry (DXA) *
- BOD POD*

TESTSEIECTION

> Hydrostatic weighing - Measures the mass per unit of volume. Percentage body fat is estimated based on the density of the body. Residual volume must be accounted for.

- The Siri and Brozek equations are most often used. (Humankinetics.com)

$>$ Hydrostatic weighing may overestimate body fat\% of elderly patients sufiering from osteoporosis.
- There may be an underestimation of body fat \% in athletes due to denser bones and muscles.
$>$ Most body fat estimation techniques are based on the "łwo compartment model": fat, and fatfree mass.
> Fat firee mass includes organs, muscle, bone, and body water.
$>$ Do notequate fatfree mass with muscle.

TESTSEIECTION

$>$ Skin fold measurements
\checkmark Based on the relationship between subcutaneous fat and total body fat

- A combination of 7 dififerent sites are used; ticeps, pectoral, subscapula midaxilla, abdomen, suprailiac, quadriceps.
- Many dififerent equations to determine body density, ie. Jackson and Pollock.
- Can be up to 98% accurate.

TESTSEIECTION

- BODY COMPOSIION
$>$ Body Mass Index (BMI)
$>$ Body mass (kg) / stature (m2)
- Can be lbs/ inches
- Underweight = <18.5
- Normal weight = 18.5-24.9
\downarrow Overweight = 25-29.9
- Obesity = BMI of 30 or greater

TESTSEIECTION

$>$ Limitations of BMI
$>$ It may overestimate body fat in athletes and others who have a muscular build.
> It may underestimate body fat in older persons and others who have lost muscle.
> http://www.nhlbisupporticom/bmi

TESTSEIECTION

- BODY COMPOSIION
-Hydrostatic weighing
-Skinfold measurements
- FIEXIBIIIY (or MOBJITM)

Stand reach

IESTSEIECION

- Day 1
\checkmark 2-mile run - under 12 min
- Day 2
$>$ Shutte sprint (5-10-15-20-25) - 32sec
-60 second situp test
- 60 second push-up test
- Day 3
- Vertical jump
$>$ BP (90\% max)
Division III soccer

ENVIRONMENTALSTRESSES

- Hypothermia - defined as a condition where the core temp is 95 F (35 C). Muscular coordination becomes affected, and judgment is impaired as core temp decreases.

ENVIRONMENTALSTRESSES

> Wind Chill Index - The wind constantly replaces the insulating air layers around the body with coolerambientair.

- Respiratory tract- In extreme cold, inc oming air is wamed to between 26.5 and 32.2 C by the time it reaches the bronchi.

Alitude Stress

$>$ High alitude - decreased barometric pressure reduces ambient PO2
$>$ Acclimatization - dealing with the reduced loading of HB
$>$ Immediate changes-hypeventilation, increased blood fiow fiom increased submaximum HR
>2 weeks for $10,000 \mathrm{ft}$

Hematological Changes

$>$ Decreased plasma volume
$>$ Increased hematocrit
$>$ Increased hemoglobin
> Increased \# of RBC's

Hematological Changes

$>$ live high-train low model (LНІL) - This model is a training method in which athletes live athigh alitude and train at low alitude, usually with the goal of improving performance atsea level. The main idea is to gain the benefits of high alitude acclimatization while maintaining the intensity of low alitude training. Increased EPO activity has been observed. This has not been observed in simulated HILconditions (hypoxic tent).

Related Medical Problems

$>$ Acute Mountain Sickness (AMS) - headache, dirriness, nausea, constipation, vomiting visual problems, general weakness, Can occur within $4-12$ his @ 10,000 feet

- Appetite suppression can be severe.
$>$ Resolution of symptoms within 1 week.

Related Medical Problems

$>$ High Altude Pulmonary Edema (HAPE) - general fatigue, coughing, headache, nausea. Occur's in 2% of the population within 12-96 his after rapid ascent
$>$ LFETHREAUENING - The afiected person needs to be brought down immediately.

Related Medical Problems

> High Altude Cerebral Edema (HACE) - more severe than HAPE Cerebral vasodilation occurs increasing edema that distorts the brain structures. Occurs in 1% of the population.

Related Medical Problems

$>1500 \mathrm{ft}(457 \mathrm{~m})-5 \%$ decrease in light sensitivity
$>3000 \mathrm{ft}$ (914 m) - 25% decrease in light sensitivity

- 30\% decrease in visual acuity
> Denver (1610 m) - 33\% decrease in postural stability
- 15% decrease in cognitive ability
- 20\% decrease in recall ability

THANK YOU:

aklein@nwhealth.edu
andyklein33 (Instagram)

